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Abstract 

The main goal of a cell stability MHD model like MHD-Valdis is 

to help locate the busbars around the cell in a way that leads to the 

generation of a magnetic field inside the cell that itself leads to a 

stable cell operation. 

Yet, as far as the cell stability is concerned, the uniformity of the 

current density in the metal pad is also extremely important and can 

only be achieved with a correct busbar network sizing. 

This work compares the usage of a detailed ANSYS® based 3D 

thermo-electric model with the one of the versatile 1D model part 

of MHD-Valdis to help design a well balanced busbar network. 

Introduction 

The problem of choosing the busbar sizing in order to obtain a 

uniform current pick up in all the collector bars of a modern side by 

side high amperage aluminum electrolysis cell, while known to be 

critical to the cell MHD stability, is not often discussed in the 

literature. 

References [1 and 2] are two exceptions, each presents an in-house 

computer code called respectively NEWBUS and BUSCAL 

designed specifically to do such a task. Both use a simple 1D line 

busbar network representation, a temperature dependent electrical 

resistivity and solve for the resulting non-linear problem by 

computing the voltage and temperature equations iteratively and 

alternately until convergence is reached. These days, such an in-

house solver can be setup fairly rapidly in an Excel spreadsheet 

(see figure 1). 

Typically, the calculated collector bars current pick up distribution 

and the different currents in the busbar network are then transferred 

to the metal pad current density solver and the metal pad magnetic 

field solver in preparation to run the MHD wave stability solver.  

Much more recently, [3, 4, 5 and 6] ANSYS® based 3D full cell 

and external busbar thermo-electric models have been developed in 

order to very accurately compute the metal pad current density field 

considering both the converged steady-state ledge profile and the 

busbar design. Of course, once developed, the 3D busbar model 

can also be solved stand-alone. 

 

 

 

 

 

 

 

 

 

Figure 1. Simple 1D line network model of an anode studs, yoke 

and rod implemented in an Excel spreadsheet. 

So, on one hand, it is possible to develop an in-house code to solve 

a simplified 1D line network busbar representation and use that 

tool to perform busbar sizing optimization and, on the other hand, 

it is possible to develop an ANSYS® based parametric 3D busbar 

model to do the same. 

Yet, there is now also a third option, using MHD-Valdis [7, 8, 9, 4, 

5 and 10] which is a commercially available, fully non-linear MHD 

cell stability solver. The fact that it is fully non-linear, means that it 

is solving among other variables the busbar network current 

distribution at each time step. It is doing so using a versatile 1D 

line network busbar generator and solver called BUSNET also 

available to carry out busbar sizing optimization studies. 

The three above options will be compared to try to identify the 

most efficient tool to carry out busbar sizing optimization studies, 

but before proceeding with the comparison exercise, it is important 

to take a step back and first review the background theory of the 

equations that need to be solved. 



Busbar Heat Balance and Voltage Drop Equations 

In steady-state mode, the busbar network heat balance equations 

are: 
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Both references [1 and 2] correctly introduced all the above 

equations including equation (4): the temperature dependent 

electrical resistivity of the aluminium busbar that makes that system 

of equations non-linear. 

But both references  [1 and 2] failed to present an equation for h , 

the global (convective and radiative) heat transfer coefficient 

between the busbar external surfaces and its surrounding 

environment. 

That global heat transfer coefficient can be evaluated as below 

assuming that the background radiative temperature is equal to 

airT the nearby air temperature [11, 12]: 
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Notice that in eq. (8) both 
BT  and 

airT  are in K. 

In equation (7) Nu , the Nusselt number is correlated with Ra , 

the Rayleigh number using the following semi-empirical 

relationships. 

For vertical surfaces, we have: 
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59.0 RaNu = , for 
94 1010 ≤≤ Ra   (9) 

3
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105.0 RaNu = , for 
129 1010 ≤≤ Ra   (10) 

For horizontal surfaces facing up we have: 

4
1

54.0 RaNu = , for 
75 10210 ×≤≤ Ra   (11) 

3
1

141.0 RaNu = , for 
117 1010 ≤≤ Ra   (12) 

And finally, for horizontal surfaces facing down we have: 
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Once tabulated for one value of 
airT  and the range of possible 

values for 
BT , it is possible to fit the results obtained computing 

the above complex set of equations into the following form (see 

figure 2): 
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Figure 2. Curve fitting of h  for one value of 
airT  and ε . 

It is very important to realize that the correct evaluation of equation 

(15) is critical to the correct calculation of the different busbar 

temperatures in the network and that equation (15) coupled with 

equation (4) will dictate what will be the final busbar network 

current balance. 

In order to even better illustrate the importance of equation (15), it 

is possible in the case of a very long busbar of constant cross 

section to neglect the heat conduction term in the middle part of 

that busbar. The temperature in the middle section of that busbar is 

simply define by the following equation: 
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Or more directly, it is possible to rewrite (16) as: 
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By assigning some values to the 8 parameters involved: 

810 −= Eρ ;  0038.0=ρα ; 

60 =h ;  0064.0=hα ; 

1.0=S ;  4.1=P ; 

50000=I ;  25=aitT  

BT  converges to 100 ºC. But if by applying a surface treatment to 

that busbar surface, the surface emmissivity is increased from 0.4 to 

1.0, the heat transfer coefficient equation parameters are changing 

to: 

6.80 =h ;  0077.0=hα  

And 
BT  now converges to 76 ºC reducing the busbar electrical 

resistivity by 7%! 

The voltage equation is a lot more straightforward as it is the 

standard application of the Kirchoff’s laws: 
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It is a linear problem when the temperatures are kept constant. 

3D ANSYS® based busbar model 

It is quite easy to build a parametric 3D ANSYS® based busbar 

model (see figure 3). In such a model, the exact busbar geometry 

can be reproduced and the detailed convection and radiation 

boundary conditions can be applied i.e. different boundary 

conditions for the vertical, horizontal facing up and down surfaces 

etc. 

 

Figure 3. Mesh of the 3D ANSYS® based busbar model.  

In the 3D model presented here however, in order to be able to 

compare with the 1D model results, equation (15) have been used 

to compute all the heat transfer coefficients instead of using the 

standard COEF macro [11] that computes a series of heat transfer 

coefficients tables using the above full set of equations based on 

individual surface orientation, typical length etc. So here, for 

comparison purpose only, a single heat transfer coefficient equation 

is wrongly used for all the busbar external surfaces regardless of 

the different surface orientations. 

All the busbar surfaces in contact with cathodic flexibles are 

defined to be at 0 potential and the surfaces of the 12 risers in 

contact with the anode beam have been coupled together in order to 

be at the same potential. Figure 4 presents the obtained temperature 

and figure 5 presents the obtained voltage. 

 

 

Figure 4. Thermal solution of the 3D ANSYS® based busbar 

model. 

 

Figure 5. Voltage solution of the 3D ANSYS® based busbar 

model. 

The maximum temperature reached in the positive or upstream 

busbar is 95.1 ºC and in the negative or downstream busbar is 

190.2 ºC. The global busbar network voltage drop is 215 mV with 

243.3 kA or 48.7% of the total 500 kA passing in the negative or 

downstream side and 256.7 kA or 51.3% passing in the positive or 

upstream side. 



1D ANSYS® based busbar model 

Like NEWBUS [1] and BUSCAL [2], it is possible to write a 

FORTRAN program to solve the coupled voltage and temperature 

set of non-linear equations generated from the discretisation of a 

3D busbar network geometry into a network of 1D line elements. 

Nowadays, it is also possible to create an Excel spreadsheet similar 

to the one presented in figure 1. 

But building a versatile and user friendly in-house application takes 

time. For efficiency reasons, it was decided to use 1D thermo-

electric line elements available in ANSYS® to build a 1D line 

elements network model similar to NEWBUS and BUSCAL (see 

figure 6). 

 

Figure 6. Mesh of the 1D ANSYS® based busbar model. 

The model contains108 line elements and 120 nodes. Except for the 

V shaped current collectors at the base of the negative risers, each 

busbar has been represented by a 1D line element of identical 

section and length. The external busbar surface area needs to be 

calculated as an element property and again except for the V 

shaped negative current collectors those surface areas are also 

identical to the one automatically computed by ANSYS® in the 3D 

busbar model. Of course, the aluminum busbar material properties 

and the boundary conditions are identical to the one set in the 3D 

model. 

The maximum temperature reached in the positive busbar is 98.4 

ºC and in the negative busbar is 186.0 ºC. The global busbar 

network voltage drop is 230 mV with 235.6 kA or 47.1% passing 

in the negative side and 264.4 kA or 52.9% passing in the positive 

side. 

By comparing the results between the 3D and the 1D model, it 

appears obvious that the negative risers section is more resistive in 

the 1D model version. Clearly the 1D line elements representation 

of the V shaped current collectors, which is really a 2D feature, is 

not accurately enough represented. 

It is of course possible to improve the 1D model representation of 

the V shaped negative current conductors (now that it is known that 

it is required to do so following the comparison exercise). This only 

requires the construction of a more complex 1D line elements 

network (see figure 7). 

In this improved 1D model version, the maximum temperature 

reach in the positive busbar is 95.5 ºC and in the negative busbar is 

190.9 ºC. The global busbar network voltage drop is 224 mV with 

241.2 kA or 48.2% passing in the negative side and 258.8 kA or 

51.8% passing in the positive side. 

 

Figure 7. Improved mesh of the 1D ANSYS® based busbar model. 

This is clearly a better representation of the real 3D busbar network 

but still some discrepancies remain. This comparison exercise 

highlights very well that it is not that easy to perfectly represent a 

real 3D busbar geometry using only a 1D line elements 

discretisation. But considering that little loss of accuracy, is the 1D 

ANSYS® based model a more efficient tool to carry out busbar 

sizing optimization studies compared to the 3D ANSYS® based 

model? 

It takes of course a lot more efforts to build a 3D model geometry 

than a 1D model geometry. An even if it is possible to build a 

parametric 3D model, there is a limit in the versatility of a single 

model topology i.e. it will not be possible to analyze all the 

possible busbar configuration one might want to analyze using a 

single 3D model topology. So using the 3D ANSYS® based model 

will translate into long delays spent in building different 3D busbar 

configuration model topology often to use them only a few times! 

This is clearly not a very practical approach. 

Unfortunately, using an ANSYS® based 1D line elements model is 

not a very practical solution either because ANSYS® is not offering 

a convenient way to apply the global heat transfer boundary 

conditions. Each busbar external surface area must be calculated 

manually by the model developer and input as a material property. 

This means that without creating a macro to streamline the model 

setup task, it would be very cumbersome to use that approach to 

carry out a busbar sizing optimization study. So neither the 3D 

ANSYS® based model and the 1D ANSYS® based model would be 

the efficient and versatile tool required. 

Versatile 1D busbar model part of MHD-Valdis 

MHD-Valdis is a fully non-linear MHD cell stability solver that 

was initially developed as an in-house code for the former USSR 

aluminum industry and later adapted for the in-house use at 

Reynolds Metals. But it has now become available, quite 

exceptionally, as a commercial software of certain unique 

advantages. Because it is a specialized MHD cell stability solver, it 

has been designed to perform this single task efficiently. Being a 

commercial package, it is quite user friendly and comes with 

customer training and support if required. 

The data input for the network current modeling and the magneto-

hydrodynamic programs are unified. The MHD package generates 

the very large set of Kirchhoff equations set automatically from the 

relatively simple unified data input. The computed temperatures of 

the electrically heated bars permit to accommodate to the resistivity 

changes. Additional flexibility permits to simulate anode changes, 



disconnected cathode bars, various branching of the current path 

between the cells, etc.  

The development of the program is based on the previous 

experience in the current simulation programs: NEWBUS [1], 

reports from Reynolds Metals Company, and Russian program 

TOK from the VAMI institute. Current distribution in a busbar 

network can be described to a reasonable approximation accuracy 

suitable for engineering purposes by linear resistance elements. The 

electric currents and voltages in such a circuit are governed by the 

Kirchhoff laws: 

1) the voltage law: The algebraic sum of the potential differences 

taken around a loop (or ‘mesh’) of a circuit is zero; 

2) the current law: The algebraic sum of the currents into a node 

of a circuit is zero. 

Directly applied, these laws contain unknown potential differences 

for each resistance and unknown currents for each mesh of a given 

circuit. There are two methods to reduce the number of 

independent unknowns and the equations respectively. These are 

based on combining the two laws and are referred to as either mesh 

analysis or nodal analysis. The mesh analysis is based on currents 

as unknowns. A set of mesh currents I n  are chosen to traverse all 

complete loops of the circuit. Since each mesh current flows right 

through any junction (node) in its path, the current law is 

automatically satisfied. Then it is left to apply the voltage law for 

each of the meshes by replacing the potential differences with the 

algebraic sums of currents through the particular resistance 

multiplied by this resistance (Ohms law).  

For the reduction cell situation this procedure was used in the 

previously referenced programs and involves a tedious job of 

locating all possible meshes of the circuit that is rather hard to 

automate in a computer program. Therefore this approach involves 

an intelligent input from the program user and results in long labor 

days with a possibility of potential errors. Principal changes in the 

circuit, such as anode or cathode element disconnection or new 

branching, require significant reconsideration of the equation set. 

For the automatic circuit analysis purposes the nodal analysis is 

found to be more convenient. According to this method the 

potentials at the nodes are the independent unknowns. The use of 

node potentials rather than mesh currents makes for greater 

efficiency in the analysis of circuits that are predominantly parallel 

in character, since the number of simultaneous equations that have 

to be solved is significantly smaller. The following equation set 

arises for M nodes each of which has N directly connected neighbor 

resistances: 
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where U m  is potential at a node, U n  - for nodes at other ends of 

neighbor bars, Rn  - resistances of neighbor bars, Im  - external 

current entering the node. In our case total current ‘I’ enters the 

reference nodes in the liquid metal of previous cell and ‘-I’ current 

leaves the nodes at the liquid metal of the downstream cell. For all 

other nodes the external current - right side of the equation - is 

zero. This is just another statement of the current law, and the 

voltage law is satisfied because the sum of the potential differences, 

with U m  expressed from (21), over the closed mesh is identically 

zero. Formally this law can be applied even for two resistances 

connected in series, and this property is essential in order to 

generate automatically the set of equations to solve.  

    After finding the potentials at nodes, the potential difference 

between two neighbor nodes multiplied by the connecting 

resistance gives the current in each resistance. The main task of the 

present program is to find the current distribution in the bar 

network, yet a further improvement in accuracy can be achieved if 

computing Joule heating:    2

mm IR ⋅ for each of the resistance 

elements. 

      Knowing the Joule heating, it is possible to estimate the 

temperature of a bar. For this purpose we integrate the temperature 

T equation over a single bar volume and an equation set for the 

discrete variables yields: 
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Where km is conductivity of the m-th bar, summation is over n 

neighbor bars, Sm is the cross section area, Lm – length, hm from 

(15). When the temperatures are calculated, the resistances Rm(T) 

can be updated taking into account the linear temperature 

dependence (4). This set can also be solved by linear algebra 

solvers, e.g., from the package LAPACK.  

After this new resistances are calculated and the electric circuit 

equation set solved again to iterate the whole procedure while the 

convergence is achieved. The convergence is easily established for 

bars with reasonable cross sections and sufficiently effective heat 

transfer to the ambient air and to the neighbor bars. We incorporate 

in the program also the heating at the ends of first and last bars 

connected to the anodes and the cathode carbon by assigning the 

user defined temperatures at these ends. 

The first calculation step needed for an MHD model is the electric 

current distribution in the busbars.  This is calculated by coupling 

the electric current in the fluid zone to the resistance network 

representing the elements division of individual anodes and 

cathode collector bars as well as the whole busbar circuit between 

two adjacent cells. The electric current in the fluid zones must be 

computed from the continuous media equations governing the DC 

current (which can change in time with the waves and anode 

burnout process): 

,σ ϕ σ= − ∇ + ×j v B                            (23) 

where the induced currents in the highly conducting liquid metal 

are accounted for. The electric potential in the fluid is governed by 

the equation: 
2 ( ),ϕ∇ = ∇⋅ ×v B                           (24) 

and the boundary conditions of zero current at the insulating walls, 

given current distribution ja at anodes, jc at cathode carbon (both 

supplied from the linear element resistivity network solution, which 

in turn is coupled to the computed potential distribution from (24)). 

At the interface between the liquid metal and the electrolyte the 

continuity of the potential and the electric current normal 

component must be satisfied. 

As the first step toward the solution of the cell MHD stability, 

MHD-Valdis uses the versatile 1D line element busbar network 

generator called BUSNET to create the 1D busbar mesh reading a 

very compact user input file. Then in a few seconds, it solves the 

non-linear problem and generates a TECPLOT [13] compatible 

output file and a standard printout ASCII output file called 

BARSOUT. 

For the present example, the MHD-Valdis BUSNET user input file 

reproduces exactly the same busbar geometry as the second 1D 



ANSYS® model. Yet, it is important to realize that BUSNET is 

creating and solving a lot more than the busbar network, it is 

creating and solving the full cell network as well (see figure 8). 

BUSNET results are as follow: the maximum temperature reached 

in the positive busbar is 94ºC and in the negative busbar is 197 ºC; 

the global busbar network drop is 224 mV with 247.0 kA or 49.4% 

passing in the negative or downstream side and 253.0 kA or 50.6% 

passing in the positive or upstream side. 

 

Figure 8. Thermal solution of the BUSNET full cell and busbar 

model. 

The fact that the network current balance between the positive and 

negative sides is closer to 50% 50% than both the 3D and 1D 

ANSYS® models can easily be explained by the fact that by 

modeling also the cathode blocks, BUSNET is solving the problem 

more accurately because the true equipotential condition is at the 

metal pad above the cathode block. If the current distribution is not 

uniform between the positive and negative sides of the cell, the 

potential in the cathode flexibles will not be the same between the 

positive and negative sides and this of course have an impact on the 

current distribution itself. 

This little comparison exercise just highlighted the fact that to 

accurately compute the busbar network current distribution, it is 

important to consider also the cathode block resistance layer as the 

two valid equipotential points are the metal pad and the anode 

beam not the cathode flexibles and the anode beam. 

So from that fact alone, BUSNET the 1D versatile busbar model 

part of MHD-Valdis is a better tool to carry out a busbar sizing 

optimization study. But this is not the only reason, BUSNET user 

input file is also quite easy to edit and TECPLOT is a powerful and 

easy to learn postprocessor, making BUSNET a user friendly tool 

to use. 

Conclusions 

It was demonstrated that it is not possible to reduce a given 3D 

busbar geometry into a 1D line elements network geometry without 

loosing some accuracy. 

It was demonstrated that the global heat transfer coefficient 

between the busbar external surfaces and its surrounding has a big 

impact on the busbar thermal balance. An improper setup of that 

temperature dependent parameter will affect significantly the 

accuracy of the model. 

It was demonstrated that it is not possible to accurately compute the 

busbar network current balance without including the cathode 

blocks because the potential at the end of the cathode flexibles is 

itself influenced by the current balance. 

Finally, MHD-Valdis is the modeling tool recommended to carry 

out a busbar sizing optimization study because it is very efficient, 

versatile and user friendly. The maximum accuracy will be obtained 

by using an ANSYS® based 3D full cell and external busbar model, 

but that tool is not at all practical to carry out an optimization 

study. 

References 

1. T. Tvedt and H. G. Nebell, “NEWBUS, a Simulation Program 

for Calculation of the Current Distribution in the Bus Bar 

System of Alumina Reduction Cells”, Light Metals, TMS, 

(1988), 567-573. 

2. J. I. Buiza, “Electromagnetic Optimization of the V-350 Cell”, 

Light Metals, TMS, (1989), 211-214. 

3. M. Dupuis, “Toward the Development of a 3D Full Cell and 

External Busbars Thermo-Electric Model”, Proceedings of the 

41st Conference on Light Metal, CIM, (2002), 25-39. 

4. M. Dupuis, V. Bojarevics and J. Freibergs, “Demonstration 

Thermo-Electric and MHD Mathematical Models of a 500 kA 

Al Electrolysis cell: Part 2”, Light Metals, TMS, (2004), 453-

459. 

5. M. Dupuis and V. Bojarevics, “Weakly Coupled Thermo-

Electric and MHD Mathematical Models of an Aluminium 

Electrolysis Cell”, Light Metals, TMS, (2005), 449-454. 

6. M. Dupuis, “Thermo-Electric Design of a 740 kA Cell, is there 

a Size Limit?” Aluminium 81, (2005) 4, 324-327. 

7. V.  Bojarevics and M.V. Romerio, “Long Wave Instability of 

Liquid Metal-electrolyte Interface in Aluminium Electrolysis 

Cells: a Generalization of Sele’s Criterion”, Eur. J. Mech., 

B/Fluids, 13 (1) (1994), 33-56. 

8. V. Bojarevics, “Non-Linear Waves with Electromagnetic 

Interaction in Aluminium Electrolysis Cells”, Progr. Fluid 

Flow Res.: Turbulence and Applied MHD, eds. H. Branover 

and Y. Unger, AIAA, (1998), Chapter 58, 833-848. 

9. M. Dupuis, V. Bojarevics and J. Freibergs, “Demonstration 

Thermo-Electric and MHD Mathematical Models of a 500 kA 

Al Electrolysis cell”, Proceedings of the 42nd Conference on 

Light Metals, CIM, (2003), 3-20. 

10. V. Bojarevics, “MHD-Valdis Reference Manual”, Greenwich 

University,  (2005). 

11. M. Dupuis, “Computation of Heat Transfer Coefficient Tables 

Establishing Boundary Conditions between Hot Surfaces and 

their Surroundings”, GeniSim Internal report,  (1996). 

12. M. Dupuis, A. Koshie, V. Janakiraman, S. Karthikeyan and D. 

Saravanan, “Accurate Assessment of the Hirakud Smelter 

Aluminium Reduction Cell Thermal Balance using only 

Temperature Measurements”, Proceedings of the 43nd 

Conference on Light Metals, CIM, (2004), 525-533. 

13. “TECPLOT User’s Manual”, Amtec Engineering, (2005), 

www.tecplot.com/support/tecplot_documentation.htm 


